Периодический закон

История создания периодической системы

В истории каждого научного открытия можно определить два основных этапа:

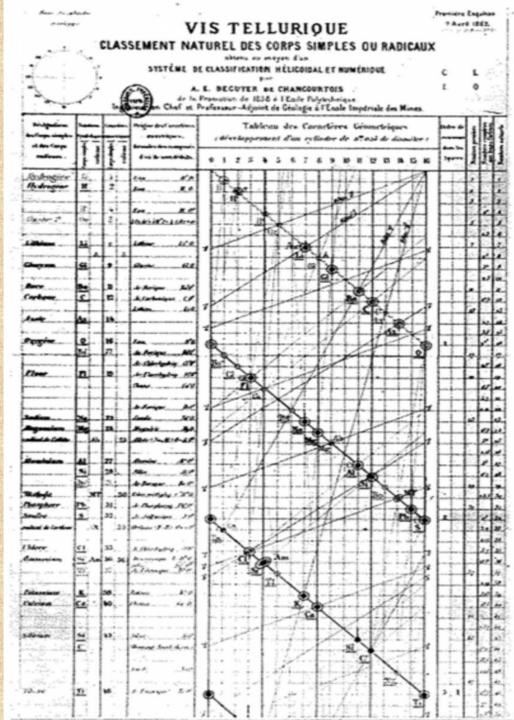
- 1) установление частных закономерностей;
- 2) сам факт открытия и признания этого открытия.

До того как Д.И. Менделеев сформулировал периодический закон и предложил его графическое изображение (периодическую систему) существовали и другие попытки систематизировать знания о свойствах элементов. Ученые предлагали свои таблицы и графики элементов. Некоторые из ученых утверждали, что именно им принадлежит право первенства открытия.

Закон триад

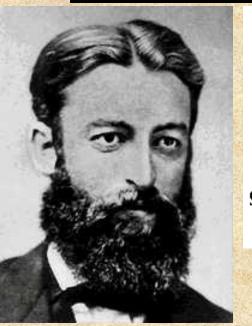
Начало 19 века Дж. Дальтон (основатель атомистики) ввел важнейшую характеристику элементов – атомный вес (позже атомная масса).

> Первым применил количественные характеристики элементов немецкий ученый Иоганн Вольфганг Деберейнер (1780 - 1849).


> > Позднее ученые Макс Петтенкофер (1850) и Жан Батист Дюма (1857) объединили большее число элементов в триады.

Винтовая линия Шанкартуа

Закон октав

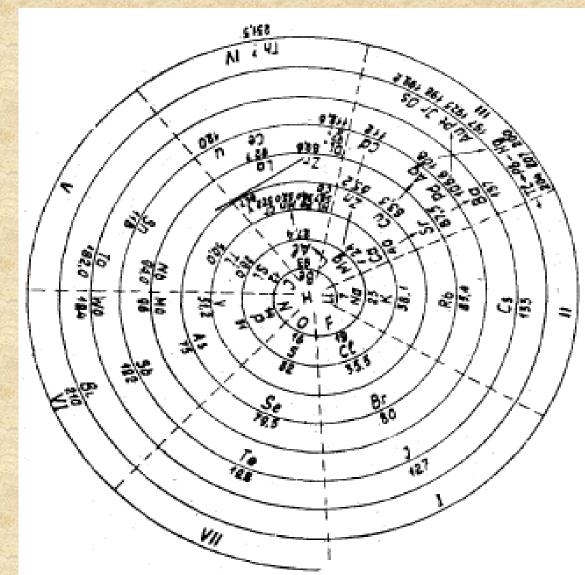


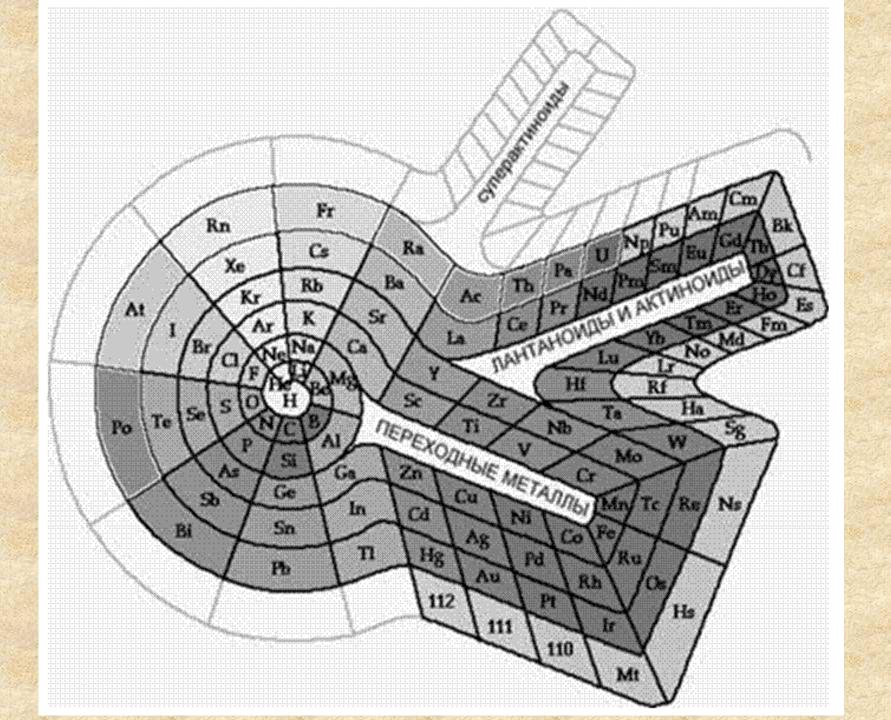
1863 – Джон Александер Рейна Ньюлендс. Английский химик.

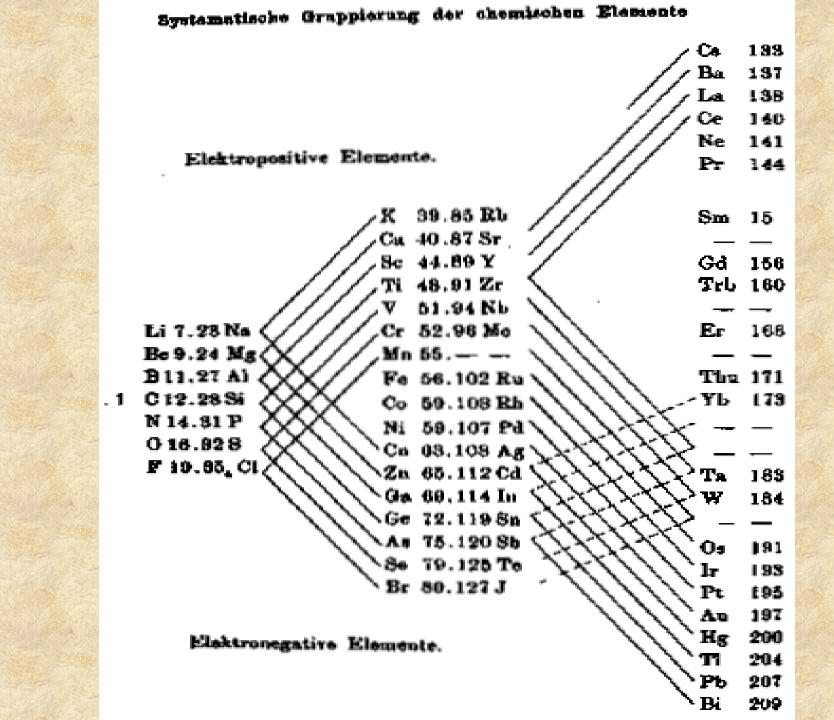
ľ	No. No. No.		No. No.		No.		No.		No.						
н	1	F	3	C1	15	Co&Ni	22	Bı	29	Pd	36	I	42	Pt & Is	: 50
Li	2	Мa	9	K	16	Cu	2.3	Rb	30	Ag	37	C s	44	T1	5.3
G	3	Mg	10	C a	17	Zn	24	Si	31	$\mathbb{C} d$	33	BaæV	45	Pb	54
Во	4	A1	11	Cı	13	Y	25	Ce&La	33	v	40	T a	46	Th	56
C	5	Si	12	Ti	19	In	2.6	Zτ	32	Sn	39	w	47	Нg	5.2
N	6	P	13	Mn	20	As	27	Di& Mo	34	Sb	41	Nb	43	Bi	55
0	7	S	14	Fe	21	S e	28	Ro & Ru	35	T e	43	Aιι	49	Os	51

Если сходные элементы расположить друг за другом, то каждый восьмой элемент располагается под первым, свойства элементов повторяются подобно октавам в музыке. В таком графическом изображении без пропусков исключалась возможность открытия новых элементов, кроме того многие элементы попадали на несоответствующие им места.

Таблица Мейера


Таблица Мейера 1864 г. (фрагмент)


	4 val	3 val	2 val	1 val	1 val	2 val
	C=12	N=14.4	0=16	F=19	Na=23	Mg=24
	Si=28.5	P=31	S=32	CI=35.5	K=39	Ca=40
		As=75	Se=78.8	Br=80	Rb=85.4	Sr=87
September 1	Su=117.6	Sb=120.6	Te=128.3	I=126.8	Cs=133	Ba=137.4
Sear P	Pb=207	Bi=208			(Tl=204)	


1864 – немецкий ученый Юлиус Лотар Мейер

Расположил 44 элемента из известных 62-х в шести столбцах в соответствии с их валентностью по водороду. Однако эта таблица не отражала периодичности свойств. В 1870 г. статья «Природа химических элементов как функция их атомных весов», приведена графическая зависимость атомных объемов от атомных масс (кривая Мейера).

Спиралевидная периодическая таблица Баумгауэра Г. (Baumhaur H.), 1870.

Периодический закон и его графическое отображение

1869 – русский ученый Д.И.Менделеев открыл периодический закон и опубликовал свой первый вариант периодической системы химических элементов «Опыт системы элементов основанный на их атомном весе и химическом сходстве». В этом первоначальном варианте таблицы многое было неясно, требовало уточнений и изменений. На протяжении 37 лет Менделеев продолжает творческую разработку таблицы.

Итогом работы Менделеева в развитии периодического закона является следующий вариант таблицы, который был помещен в 8 издании Основ химии.

	all is person person			The second second		Personal de Deservation	Д. И. Менд	Washington.			Dell'Antique S		
Риды	Группы элементов												
MAM	e e	t t	II	nt }	IV	v	VI	VII		VIII			
1	-	Водород Н 1,008	-		-	-	+-	-			Q.		
2	Гелий Не 4,0	Литий Li 7,03	Бериллий Ве 9,1	Бор В 11,0	Углерод С 12,0	A307 N 14,04	Кислород О 16,00	Фтор F 19,0					
3	Неон Ne 19,9	Натрий Na 23,05	Магний Мg 24,3	Алюминий Al 27,0	Кремний Si 28,4	Фосфор 31,0	Cepa S 32,06	Хлор Cl 35,45		Salah O. da Fil Sept Sept S			
4	Аргон Ar 38	Калий К 39,1 Медь Си 63,6	Кальций Са 40,1 Цинк Zn 65,4	Скандий Sc 44,1 Галлий Ga 70,0	Титан Т! - 48,1 Германий Ge 72,3	Ванадий V 51,4 Мышьяк - Ая 75	Хром Сг 52,1 Селен Se 79	Марганец Мп 55,0 Бром Вг 79,95	Железо Fe 55,9	Кобальт Со 59	Никель NI (Cu) 59		
6	Криптон Кг 81,8	Рубидий Rb 85,4 Серебро Ад 107,9	Стронций Sr 87,6 Кадмий Cd 112,4	Иттрий У 89,0 Индий In 114,0	Цирконий Zr 90.6 Олово Sn 119,0	Ннобий Nb 94,0 Сурьма Sb 120,0	Молибден Мо 96,0 Теллур Те 127	— Иод I 127	Рутений Ru 101,7	Родий Rh 103,0	Пелладня Рd (Ag) 106,5		
8	Ксенон Хе 128	Цезий Сs 132,9	Барий Ва 137,4	Лантан La 139	Церий Се . 140				1=1		-		
10 11		- Золото Аи 197,2	- Ртуть Нд 200,0	Иттербий Yb 173 Таллий Ti 204,1	Pb 206,9	Тантал Та 183 Висмут Ві 208	Вольфрам W 184	=	Осмий Оs 191	Иридий Ir 193	Платина Pt (Au) 194,9		
12	-	-	Радий Ra 224	-	Торий Th 232	-	Уран U 239				•		
-1100	R	R ₂ O		ысшие солеоб R ₂ O ₃	разные окис. RO ₂	ты: R ₂ O ₅	RO ₃	R ₂ O ₇		RO ₄			

Значение периодического закона

□Периодическая система элементов представляет собой конспект химии всех элементов, график по которому можно читать свойства элементов и их соединений. Система позволила уточнить положение, величины атомных масс, значение валентности некоторых элементов. □На основе таблицы можно было предсказать существование и свойства еще не открытых элементов. □Менделеев предсказал и описал свойства не открытых в то время элементов, которые он назвал экабор (скандий), экаалюминий (галий), экасилиций (германий).

Открытия, позволившие развить периодический закон

1875 — французкий ученый П.Э. Лекок де Буабодран открыл новый элемент галий.

1879 — шведский ученый Ларс Фредерик Нильсон окрыл новый элемент скандий.

1886 — немецкий ученый Клеменс Александр Винклер — открыл элемент германий.

германиевый диод

1893-1898 — английский ученый Уильям Рамзай открыл сначала инертный газ аргон, а позже и остальные.

1913 — английский физик Генри Мозли на основании экспериментальных данных (исследование рентгеновских спектров химических элементов) установил, что порядковый номер элемента совпадает с зарядом ядра атома

Периодическое изменение свойств элементов зависит от их порядкового номера.

Современная формулировка периодического закона

Свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

Структура периодической системы химических элементов Д.И. Менделеева

Период — горизонтальный ряд элементов, расположенных в порядке возрастания порядкового номера от первого s-элемента (ns^1) до шестого p-элемента (ns^2np^6)

Каждый период начинается активным щелочным металлом и заканчивается инертным газом

Периоды: 1) малые – 1-й (2 элемента), 2-й и 3-й(8 элементов)

2) большие — 4-й, 5-й (18 элементов) 6-й (32 элемента) 7-й (19 элементов, незавершенный)

Состоят из 2-х рядов: четный содержит только металлы; нечетный содержит металлы и неметаллы

Группы — вертикальные ряды. Номер группы определяет максимальную валентность элемента, максимальную положительную степень окисления, число валентных электронов (исключения кислород и фтор)

Группы делятся на подгруппы. Подгруппа — это вертикальный ряд элементов, имеющих однотипное электронное строение и являющихся электронными аналогами.

Главные подгрупы (А-подгруппы) - содержат элементы s- и р- электронных семейств, которые расположены и в больших и в малых периодах. S-элементы только металлы P-элементы металлы и неметаллы.

Побочные подгруппы(В-подгруппы) содержат элементы **d**-электронных семейств. В побочных подгруппах элементы только больших периодов, только металлы.

Порядковый номер, массовое число.

Из закона Мозли следует, что порядковый номер элемента соответствует положительному заряду ядра атома. Атом характеризуют три фундаментальных элементарных частицы. Протон, нейтрон, электрон. Ядро заряжено положительно и в нем сосредоточена основная масса. Ядро состоит из протонов и нейтронов. Сумма количества протонов и нейтронов МАССОВОЕ ЧИСЛО – А.

$$A = N(^{1}_{1}p) + N(^{1}_{0}n)$$

A соответствует относительной атомной массе элемента, которые приведены в п.с.: A = Ar.

Число протонов равно порядковому номеру: $N(^1_1p)=Z$

Число нейтронов: $N(^{1}_{0}n) = A - Z$

Число электронов равно заряду ядра□ число электронов равно порядковому номеру: N(e)=Z

Характеристики элементарных частиц

Наименов. Частицы	Символ	Заря	Д	Macca		
	ВОЛ	Кл	O. e.	KZ	а.е.м.	
Протон	¹ ₁ p	1,6•10-19	+1	1,7•10-27	1	
Нейтрон	¹ ₀ n	0	0	1,7•10-27	1	
Электрон	ē	-6•10 ⁻¹⁹	-1	9,11-10-31	0,0005486	

Изотопы

Атомы одного элемента, имеющие одинаковый заряд ялра, но разные массовые числа называются <u>изотопами.</u>

Изотопы содержат одинаковое число протонов, но разное число нейтронов.

Примеры: ¹₁H – протий, ²₁H-дейтерий ³₁H-тритий

³⁵₁₇Cl (77,3%), ³⁷₁₇Cl (22,7%)

Ar(Cl)=(35•77,3+37 •22,7)/100=35,454-относительная атомная масса – среднее арифметическое масс изотопов с учетом их % содержания

Периодическая система и строение атомов.

В настоящее время периодическую систему элементов Менделеева можно рассматривать как классификацию атомов по строению их электронной оболочки. Таблица дает исчерпывающую информацию о разнообразии и подобии в строении электронной оболочки, а следовательно классификацию элементов по строению их атомов. Физико-химические свойства элементов тесно связаны со строением электронной оболочки атома, следовательно таблица представляет классификацию элементов и по физико-химическим свойствам.

Классификация атомов

- 1. По способу застраивания электронной оболочки
- 5- элементы заполняется s-подуровень наружного слоя. Внутренние электронные слои остаются неизменными. Это два первые элемента любого периода
- *р*-элементы заполняется *р*-подуровень наружного слоя Внутренние электронные слои остаются неизменными. Это шесть последних элементов периода (кроме 7-го)

d — элементы. Застраивается соседний с наружным уровень. В наружном слое этих элементов на sподуровне находится чаще 2 реже 1 электрон. Таких элементов по 10 в каждом большом периоде (кроме 7го)

f — элементы. В атомах этих элементов заполняется f-подуровень третьего уровня, считая от внешнего. Сейчас известно 28 таких элементов. Они делятся на два семейства лантаноидов (заполняется 4f-подуровень) и актиноиды (заполняется 5f-подуровень.

2. По числу электронов в наружном квантовом слое электронной оболочки

металлы — все элементы в наружном квантовом слое которых 1-3 электрона (кроме водорода, бора, гелия). Могут только отдавать электроны, поэтому не образуют отрицательно заряженных ионов.

К ним относятся s-, некоторые p-, а также d-, fэлементы.

d-,f-металлы могут проявлять переменную степень окисления. Максимальная положительная степень окисления равна номеру группы в которой находится элемент.

Неметаллы — элементы наружный слой которых содержит 4 - 7 электронов, а также водород и бор. Неметаллы способны как принимать так и отдавать электроны. Поэтому могут проявлять как отрицательные, так и положительные степени окисления. Однако тенденция к приему электронов у них выражена сильнее. Все неметаллы кроме водорода относятся к *p*-элементам.

Инертные (благородные) газы — элементы в наружном слое которых находится 8 (*p*-элементы :неон, аргон, криптон, ксенон, радон) или 2 электрона (гелий *s*-элемент)

Выводы:

- 1) в группе сверху вниз радиус атома увеличивается. Число электронов остается постоянным равным номеру группы. Чем меньше электронов на внешнем уровне и чем дальше эти электроны находятся от ядра, тем слабее электростатические силы между «+» ядром и электронами легче атом элемента отдает эти электроны. Элементы легко отдающие электроны проявляют металлические свойства, восстановительные свойства. Их оксиды и гидроксиды проявляют основные свойства (реже амфотерные)
- 2) В периоде слева направо радиус атома уменьшается, т.к. число энергетических уровней в пределах одного периода постоянно, но увеличивается число электронов на внешнем уровне. Следовательно электростатическое взаимодействие между «+» ядром и электронами усиливается, а радиус уменьшается (эффект р-сжатия). В связи с этим элементы конца периода будут легче принимать электроны. Такие элементы проявляют неметаллические и окислительные свойства. Их оксиды носят кислотный характер

Электроотрицательность

Определение: электроотрицательность — способность атома притягивать к себе электроны в химическом соединении.

На практике пользуются относительными значениями электроотрицательности. Величины приводятся в таблицах. Существует несколько шкал ОЭО. Мы будем пользоваться значениями ОЭО по Полингу.

Характер изменения ОЭО аналогичен уже рассмотренным характеристикам. За единицу принята ОЭО лития. Самая высокая ОЭО у фтора. По величине ОЭО можно судить о свойствах элемента, его заряде в соединении, типах связи.

Изменение некоторых характеристик атомов и свойств элементов в периодической системе Д.И. Менделеева

Уменьшение радиуса атома

Увеличение значений энергий ионизации, сродства к электрону, ОЭО

Усиление неметаллических и окислительных свойств элементов

Ослабление основных свойств оксидов

Уменьшение температур кипения и плавления простых веществ.

Подгруппы аналогов

- 1. <u>Подгруппа щелочных металлов.</u> Общая электронная формула ...ns¹. Возбужденного состояния нет. Максимальная степень окисления +1. Общая формула оксидов Me₂O. Водородные соединения МеН-гидриды.
- 2. <u>Подгруппа бериллия.</u> Общая электронная формула ...ns². Возбужденное состояние есть. Максимальная степень окисления +2. Общая формула оксидов МеО. Водородные соединения МеН₂-гидриды.
- 3.<u>Подгруппа бора.</u> Общая электронная формула ...ns²np¹. Возбужденное состояние есть. Максимальная степень окисления +3. Общая формула оксидов Э₂О₃. Бор неметалл. Простейшее водородное соединение ВН₃- бороводород. Остальные элементы металлы. Водородные соединения МеН₃-гидриды

- 4. <u>Подгруппа углерода</u>. Общая электронная формула ...ns²np². Возбужденное состояние есть. Максимальная степень окисления +4. Минимальная степень окисления –4. Общая формула оксидов ЭО₂. Формула водородных соединений ЭН₄
- 5. <u>Подгруппа азота.</u> Общая электронная формула ...ns²np³. Возбужденное состояние есть (исключение азот). Максимальная степень окисления +5. Минимальная степень окисления –3. Общая формула оксидов Э₂О₅. Формула водородных соединений ЭН₃
- 6. Подгруппа кислорода. Общая электронная формула ...ns²np⁴ Возбужденное состояние есть (исключение кислород). Максимальная степень окисления +6 (исключение кислород). Минимальная степень окисления –2. Общая формула оксидов ЭО₃. Формула водородных соединений Н₂Э

7. <u>Подгруппа галогенов (фтора)</u>. Общая электронная формула ... ns²np⁵. Возбужденное состояние есть (исключение фтор). Максимальная степень окисления +7. Минимальная степень окисления –1. Общая формула оксидов Э₂О₇. Формула водородных соединений НЭ. К этой же подгруппе следует отнести и водород, т.к. его свойства схожи с галогенами,в частности в соединениях с металлами он проявляет степень окисления –1. Соединения водорода с металлами относятся к солеподобным.

d-элементы не имеют аналогов в 1-3 периодах. Для них неизвестна отрицательная степень окисления. Валентные электроны располагаются на внешнем s-подуровне и соседним с внешним d-подуровне. В возбужденное состояние могут переходить только электроны с внешнего s- на внешний

p-подуровень. Всего подгрупп аналогов 10. Рассмотрим некоторые из них.

Примеры

- 1. Дайте характеристику элемента № 56 по положению в п.с.
- 1) Элемент №56 барий ₅₆Ва. Ва находится в 6 периоде во второй группе главной подгруппы.

2)
$$Z=+56$$
, $N(^{1}_{1}p)=56$, $N(e)=56$,

$$N(^{1}_{0}\mathbf{n})=A-N(^{1}_{1}\mathbf{p})=137-56=81$$

Электронная формула: $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^6\underline{6s^2}$

Основное состояние: ...<u>6s²6p⁰</u> В(Ва)=0

Возбужденное состояние ... $6s^{1}6p^{1}$ В(Ва*)=2

3. Ba – s-элемент, металл, OЭO=0,9.

Высший оксид ВаО - основной.

Гидрат – Ва(ОН)2-основание

BaO+H₂O=Ba(OH)₂; BaO+CO₂= BaCO₃;

BaO+2HCl=BaCl₂+ H₂O;

$$Ba(OH)_2 + 2HCl = BaCl_2 + H_2O$$

$$Ba(OH)_2 + CO_2 = BaCO_3 + H_2O$$

$$Ba(OH)_2 + K_2SO_4 = BaSO_4 \square + 2KOH$$

2.Дайте характеристику элемента №6, 16, 17, 25, 74 по положению в п.с.

http://margo1.nm.ru